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Abstract- The future network layer protocol for the Internet  is IPv6 . Since it is not compatible with its 
predecessor, some interoperability mechanisms were designed. An important category of these mechanisms is 
automatic tunnels, which enable IPv6 communication over an IPv4 network without prior configuration. This 
category includes ISATAP, 6to4 and Teredo. 

Teredo is a service that enables hosts located behind one or more IPv4 NATs to obtain IPv6 
connectivity by tunneling packets over IPv4 UDP. In this paper,we explain how IPv6 candidates located behind 
NATs can enlist the help of “Teredo servers” and “Teredo relays” to learn their “global addresses” and to obtain 
connectivity, and how clients, servers and relays can be organized in Teredo networks.This paper studies the 
security implications  of Teredo.  However, by tunneling  IPv6 traffic over IPv4 UDP through  the NAT and 
directly to the end node, Teredo raises some security concerns.  Primary concerns  include bypassing 
security controls, reducing defense  in depth,  and allowing unsolicited  traffic. We present a novel class of 
attacks that exploit vulnerabilities in these tunnels. These attacks take advantage of inconsistencies between a 
tunnel’s overlay IPv6 routing state and the native IPv6 routing state. One of the presented attacks can DoS a 
Teredo server using a single packet. The exploited vulnerabilities are embedded in the design of the tunnels; 
hence any implementation of these tunnels may be vulnerable. In this paper we are Investigating whether this 
protocol transitioning mechanism is a worth or a risk. 
 

Index Terms- IPV6 ;Teredo; Tunneling;, NAT; 

1. INTRODUCTION 

IPv6 is the next version of the Internet  
Protocol, and many hosts and networks are being 
upgraded to support this version and take advantage 
of its features. A part of the Internet  that is 
expected  to lag behind in IPv6 availability are the 
IPv4 Network Address Translation  (NAT) devices 
used in many household  and organizational 
networks. They are only infrequently  updated or 
replaced,  especially on small networks such as 
those found in residences. Since the complete 
migration of the Internet to IPv6 is expected to take 
several years, if not decades, interoperability 
mechanisms that will enable the co-existence of IPv4 
and IPv6 are required. One such mechanism is 
tunneling.[20] Tunnels enable two IPv6 nodes to 
communicate over an IPv4-only network.  

In general, tunnels operate as follows. Each 
tunnel has at least two end points. Each end point 
must be able to process both IPv4 and IPv6 packets 
and must possess an IPv4 address. To deliver an IPv6 
packet over the tunnel, the ingress end point 
encapsulates the packet with an IPv4 header1. The 
source IPv4 address is that of the ingress end point 
and the destination IPv4 address is that of the 
intended egress end point. Consequently, each tunnel 
end point must have a routing table that associates 
each IPv6 destination address with an appropriate  

 
 
 
next-hop IPv4 address. The packet is then handled by 
the IPv4-only network as a normal IPv4 packet. When 
it reaches the egress end point, it strips the IPv4 
header and continues to process the original IPv6 
packet. The detailed operation of tunnels can be found 
in [2]. 1The Protocol field in the IPv4 header has the 
decimal value of 41,indicating that IPv6 header 
follows. A tunnel in which the end points’ routing 
tables need to be explicitly configured is called a 
configured tunnel. Tunnels of this type do not scale 
well, since every end point must be reconfigured as 
peers join or leave the tunnel. 
  To alleviate this  problem, another type of 
tunnels was introduced – automatic tunnels. In 
automatic tunnels the egress entity’s IPv4 address is 
computationally derived from the destination IPv6 
address. This feature eliminates the need to keep an 
explicit routing table at the tunnel’s end points.  

The paper considers the three most prominent 
automatic tunnels to date: ISATAP [3], 6to4 [4], and 
Teredo [5]. However, transition mechanisms that 
tunnel IPv6 directly over IPv4, such as the Intra-
Site Automatic Tunnel Addressing Protocol 
(ISATAP) and 6to4, do not typically work through  
NATs.  
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2. PRELIMINARIES 

2.1 What’s New in IPV6 
The IPv6 protocol brings a variety of new 

mechanisms to improve Internet reliability [7]. These 
include the following:  

• Significantly large address space 
• Simplified network management using stateless 

auto-configuration of nodes 
• Routing efficiency due to use of fixed-length 

headers  
• Reduction in network processor overhead due to 

reduced fragmentation 
• Improved security (IPsec is built-in) 
• Well-defined flow labels for Quality of Service  
• End-to-end address transparency  

 
 
2.2 NAT: Network Address Translation 

Basic Network Address Translation (Basic 
NAT) is a method by which IP addresses are mapped 
from one group to another, transparent to end users. 
Network Address Port Translation, or NAPT, is a 
method by which many network addresses and their 
TCP/UDP ports are translated into a single network 
address and its TCP/UDP ports. Together, these two 
operations, referred to as traditional NAT[8], provide 
a mechanism to connect a realm with private 
addresses to an external realm with globally unique 
registered addresses. The need for IP Address 
translation arises when a network’s internal IP 
addresses cannot be used outside the network either 
for privacy reasons or because they are invalid for use 
outside the network. Network topology outside a local 
domain can change in many ways. Customers may 
change providers, company backbones may be 
reorganized, or providers may merge or split. 
Whenever external topology changes with time, 
address assignment for nodes within the local domain 
must also change to reflect the external changes. 
Changes of this type can be hidden from users within 
the domain by centralizing changes to a single address 
translation router. Basic Address Translation allows 
hosts in a private network to transparently access the 
external network and enable access to selected local 
hosts from the outside. It is mandatory that all 
requests and responses pertaining to a session be 
routed via the same NAT router. One way to ascertain 
this would be to have NAT based on a border router 
that is unique to a stub domain, where all IP packets 
either originated from the domain or are destined for 
the domain. There are other ways to ensure this with 
multiple NAT devices.The NAT solution has the 
disadvantage of taking away the endto-end 
significance of an IP address, and making up for this 
with an increased state in the network. As a result, 
with a NAT device enroute, end-to-end IP network 
level security assured by IPSec cannot be assumed to 
apply to end hosts. The advantage of this approach, 
however, is that it can be installed without changes to 

hosts or routers. Protocol Structure NAT is a 
procedure, not a structured protocol. 

2.3. Tunneling Mechanism 

To minimize any dependencies during the 
transition, all the routers in the path between two IPv6 
nodes do not need to support IPv6. This mechanism is 
called tunneling. Basically, IPv6 packets are placed 
inside IPv4 packets, which are routed through the 
IPv4 routers. The following figure illustrates the 
tunneling mechanism through routers (R) using 
IPv4[8].Different uses of tunneling in the transition 
are:  

� Configured tunnels between two routers (as 
in the figure 1.)  

� Automatic tunnels that terminate at the dual 
hosts 

A configured tunnel is currently used in the Internet 
for other purposes, for example, the MBONE (the 
IPv4 multicast backbone). Operationally, it consists of 
configuring two routers to have a virtual point-to-
point link between them over the IPv4 network. This 
kind of tunnel is likely to be used on some parts of the 
Internet for the foreseeable future. 

 

 

Figure 1 Tunneling Mechanism 

3. RELATED WORKS 
In this section we give a brief overview of the three 
automatic tunnels considered in this paper: ISATAP, 
6to4, and Teredo. These tunnels are complementary, 
rather than alternative, as they are designed for 
different network scenarios.  

3.1 ISATAP 

ISATAP – Intra-Site Automatic Tunneling 
Protocol [3] – is primarily designed to transport IPv6 
packets between nodes in an IPv4 enterprise network. 
One of those nodes is a router which also has a native 
IPv6 interface. The router forwards IPv6 packets into 
or out of the tunnel. A node that belongs to an 
ISATAP tunnel has to know the IPv4 address of the 
router. If the IPv4 interface of a node has the address 
IP4, the corresponding ISATAP interface is assigned 
a 64-bit ID having one of the following two formats: 
0200:5EFE:IP4 or 0000:5EFE:IP4. The first one is 
used if IP4 is non-private and the second one 
otherwise. Using this interface ID, a link-local address 



International Journal of Research in Advent Technology, Vol.2, No.5, May 2014 
E-ISSN: 2321-9637 

30 
 

is constructed. The node probes the ISATAP router 
using the Neighbor Discovery Protocol [10], in order 
to discover the global prefix of the tunnel and to 
construct a global IPv6 address. For each ISATAP 
interface on a node a set of locators is configured. To 
send an IPv6 packet destined outside of the tunnel, the 
packet has to be encapsulated with an IPv4 header 
whose destination address is the router of the tunnel. 
If the packet is destined inside the tunnel, the IPv4 
destination will be the 32 rightmost bits of the IPv6 
destination address. In both cases the IPv4 source 
address is the IPv4 address of the encapsulator. At the 
egress end point the node first determines whether the 
packet matches a locator of the ISATAP interface. If 
there is a match, it verifies that one of the following 
two conditions holds: 1) the source IPv6 address 
corresponds to the source IPv4 address; 2) the source 
IPv4 address is the IPv4 address of the ISATAP 
router in the tunnel. The first condition holds when 
the packet’s source is part of the same ISATAP 
tunnel. The second one holds if the packet originates 
from outside of the tunnel.   

3.2 6to4 

The 6to4 mechanism [4] is designed to 
transport IPv6 packets between IPv6 clouds or sites 
connected by the IPv4 Internet. It is assumed that each 
IPv6 site has an edge router with an IPv4 interface on 
the Internet side. The IPv4 address of that interface 
determines the IPv6 prefix of the entire site. If this 
address is IP4, the 6to4 prefix of the site is 
2002:IP4/48. An edge router forwards IPv6 packets 
into and out of the 6to4 tunnel on behalf of the nodes 
in its site. An edge router that wishes to forward an 
IPv6 packet on the 6to4 tunnel to another site will 
encapsulate the packet with an IPv4 header having a 
destination address derived from the IPv6 destination 
address. The source address will be the IPv4 address 
of the ingress edge router. Before decapsulating the 
IPv4 header, the egress edge router verifies that if the 
source address is a 6to4 address, it corresponds to the 
IPv4 source address. 

If the destination of the IPv6 packet is not a 
6to4 address (does not have a 2002::/16 prefix) but a 
native IPv6 address, the edge router encapsulates and 
forwards the packet to a special router called a 6to4 
relay.  

3.3 Teredo 

The ISATAP and 6to4 tunnels encapsulate 
IPv6 packets with an IPv4 header. However, since 
most NATs cannot handle IP-in-IP packets, these 
mechanisms cannot work in the presence of a NAT. 
Hence a third mechanism was designed – Teredo [5]. 
Teredo enables nodes located behind one or more 
IPv4 NATs to obtain IPv6 connectivity by tunneling 
packets over UDP. A Teredo node performs a 
qualification procedure by interacting with an entity 
called a Teredo server located outside the NATs. 

Using this procedure, the node determines its external 
IPv4 address and UDP port assigned to it by the 
NATs.  

 
4. THE TEREDO 

Microsoft is making a strong push for IPv6, and 
in response has developed a transition mechanism to 
address this issue. Fortunately,  the mechanism was 
routed  through  IETF channels,  and the IETF has 
published  RFC 4380 as a standards-track individual 
submission. Originally the protocol was called 
Shipworm (after a species of mollusk that digs 
holes in ship hulls, analogous  to what the protocol 
does with NAT devices). But the protocol has been 
renamed Teredo, after a common genera of 
shipworms (perhaps  to avoid any negative 
connotation). 

Teredo is already in use on the Internet.  It is 
available in Windows Vista and Longhorn, where 
it is enabled by default.  Teredo is also available in 
Windows XP SP2 and Windows 2003 SP1, 
although  disabled  by default. At least one third-
party implementation of Teredo is available for 
UNIX and Mac® OS X. 
         For an IPv6-capable node behind an IPv4 
NAT, the barrier to sending and receiving packets  
from IPv peers is that at least a portion of the 
network between  the IPv6-capable node and the 
peer does not support IPv6. This includes at least 
the NAT. To resolve the problem, Teredo 
establishes an open-ended tunnel from the client, 
through  the NAT, to a dual-stacked node on the 
Internet.  IPv6 packets  are tunneled through  a single 
User Datagram Protocol (UDP) port on the NAT.  

 
               The use of Teredo has important security 
implications,  and these  implications  are discussed 
in this paper.  Little published  research exists on this 
topic, other than the “Security Considerations” 
section of the Teredo RFC itself. John Spence of 
Command Information includes a brief mention of 
Teredo in the “IPv6 Security and Security 
Update,”[3] and suggests disabling it since it 
“defeats  IPv4 NAT.”  

4.1.Teredo Tunnels 

In the Teredo case the tunneling is UDP, so 
all IPv6 Teredo packets are composed of an IPv4 
packet header and a UDP transport header, followed 
by the IPv6 packet as the UDP payload[12]. Teredo 
uses a combination of ICMPv6 [13] message 
exchanges to set up a connection and tunneled packets 
encapsulated using an outer IPv4 header and a UDP 
header, and it contains the IPv6 packet as a UDP 
payload. 

The exact nature of the packet exchange in setting up 
a Teredo connection depends on the nature of the 
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NAT device that sits in front of the Teredo client. 
Figure 2 shows an example packet exchange that 
Teredo uses when the client is behind a Restricted 
NAT.  

 

Figure 2: Teredo Tunneling 

5. WORKING OF TEREDO 

Teredo works by tunneling  IPv6 over an IPv4 UDP 
port for at least the portion of the network that is  
Pv4 only. Teredo has a high degree of automatic 
tunnel setup. 

5.1 Teredo components 

The Teredo framework consists  of three basic 
components: clients, relays, and servers. Teredo 
clients are nodes seeking to use Teredo to reach a 
peer on the IPv6 Internet.  For example, a node may 
need to reach an IPv6-only server. Clients are dual-
stack (IPv4 and IPv6) nodes that are “trapped”  
behind one or more IPv4 NATs. Teredo clients 
always send and receive Teredo IPv6 traffic 
tunneled in UDP over IPv4 (see Figure 3).      
In this paper, ports refer  specifically to IPv4 UDP 

ports unless otherwise noted.   
Teredo relays serve as routers to bridge the IPv4 

and IPv6 Internets for Teredo nodes. IPv6 native 
packets are encapsulated for transmission over the 
IPv4 Internet (including the client); when packets  
are received from the IPv4 Internet,  they are 
decapsulated into native IPv6 packets  for the IPv6 
Internet.   

 Teredo servers help clients set up tunnels  
to IPv6 nodes, determining their Teredo address and 
whether their NAT is compatible  with Teredo. Like 

relays, Teredo servers sit on both the IPv4 and IPv6 
Internets, but do not serve as a general relay. Teredo 
servers pass along packets  to and from the client, 
but only messages that pertain  to the functioning of 
the Teredo protocol; they do not pass along data 
packets. 

The Teredo servers are generally statically 
configured on the client. For example, Windows 
nodes by default use “teredo.ipv6.microsoft.com” as 
their  

 
 

 
Figure 3. Teredo encapsulates IPv6 packets in UDP over IPv4 

when packets are routed as IPv4. 

 server; this currently resolves to four servers (or at 
least four IPv4 addresses) that Microsoft maintains. 

The standard port on which the Teredo servers listen 
is UDP port 3544.  Both clients and relays can use 
any UDP port for their Teredo service, so their UDP 
service port could be ephemeral. Because the client 
is behind an IPv4 NAT, the external port number of 
its Teredo service is, in general, not the same as the 
local port that is listened  on. However, the Teredo 
protocol tries to keep that external port number 
stable  since it is the port to which the relays need to 
connect. Servers are specifically designed  to be 
stateless, so a large number of clients can be 
accommodated.  

5..2. Teredo setup 

Before packets  can be sent to and      from 
remote IPv6 nodes, some tunnel setup  
communication occurs. The phases are as follows: 
1. The client completes  a qualification  procedure 

(see “Qualification procedure”  section) to 
establish aTeredo address. 

2. The client determines which relay to use (see 
“Packet relaying and peer setup  for non-
Teredo peers” section) for a given IPv6 peer 
node. This phase  may involve a procedure to 
set up the NAT for traffic from the relay 
(“Bubble packets  and creating  a NAT hole” 
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section). 
3. .A packet is sent via a relay The first phase  

needs to be conducted only once (for each 
time Teredo is activated  on the client). The 
next two phases are completed  for each peer 
that was not recently used. After that setup,  
it is just a matter of sending the packet via the 
relay. The relaying and per-peer  setup  take a 
special form when the remote peer is also a 
Teredo IPv6 address (“Packet relaying and 
peer setup  for Teredo peers” section). A 
special provision (outside the scope of this 
p ap e r ) allows IPv6 nodes behind the same 
NAT to find each other by using an optional 
local client discovery procedure 

 
Figure 4. A Teredo microcosm, including key Teredo components, 

native IPv6 nodes,  and IPv4 NATs. The cloud represents the 
Internet,  where the yellow  areas are IPv4 only, the dark gray 
area is IPv6 only, and the mixed gray area supports both. The 

interior of the cloud represents Internet  routers  and 
infrastructure. 

5.3 Teredo addresses 

Teredo clients (and only Teredo clients) receive a 
specially formatted IPv6 address called a Teredo 
address. Addresses  contain enough information  
for a relay to reach a client (see Figure 5). 

 
Figure 5. The format of a Teredo address. Like all IPv6 addresses, 

it is 128 bits (16 octets) long. 

The prefix is standard for Teredo addresses; 
2001:0000::/32 was recently assigned.  You might 
see other prefixes, such as 3ffe:831f::/32, used in 
Teredo components that predate the current  
assignment.The second 32 bits of the address 
correspond to the IPv4 address of the client’s 
Teredo server. This part of the address tells remote 
nodes which server is assisting the client with 
communication setup.The bottom 48 bits 
correspond to the client’s external address and 
Teredo service port. This part of the address 

indicates  to relays where to send packets  destined 
directly for the client. To protect  these  two fields 
from any NAT translation, all of the bits in these  
fields are reversed. The flags field is 16 bits, but 
only 1 bit is assigned by the RFC. The top bit is the 
“cone bit.” If set, the cone bit indicates  that the 
node is behind a pure cone NAT; if unset,  it 
indicates  the node is behind a restricted NAT. The 
rest of the bits in the field should be set to 0. 

5.4 Origin data 

When a Teredo server sends an IPv6 packet to 
one of its clients on behalf of an IPv4 host, it adds 
additional data between  the UDP encapsulation and 
the IPv6 packet. This is the origin data (see Figure 
6) and reflects the IPv4 address and port number 
that it acts on behalf of. (The RFC calls this origin 
encapsulation.) 

As in Teredo addresses, the port number and 
address have all their bits reversed.  The client 
concludes that extra data is present, as the first 
nibble after the UDP header  is 0 instead  of 6 
(the version number from the IPv6 header). 

The qualification  procedure determines if a 
client can use the Teredo service and 
establishes the Teredo address. For example, a 
client cannot  use the Teredo service if it is 
behind a symmetric NAT. 

 
Figure 6. The format of the origin data, which is located below 

the encapsulated IPv6 packet. Qualification procedure 

A portion of the Neighbor Discovery Protocol 
(NDP, RFC 2461) is used, with the Teredo server 
acting as the router. 

During qualification,  the client sends Router 
Solicitations  (RSs); the server then sends back 
Router Advertisements (RAs) plus an origin data 
block (see “Origin data” section) in response. Both 
the RA and RS messages are encapsulated ICMPv6 
packets.  Since the RA is sent in response to an RS 
from the client’s Teredo service port, the origin data 
reveals to the client its external Teredo address and 
port number. That data becomes  part of the client’s 
Teredo address.  

Qualification begins with the client sending 
an RS to the server with the cone bit set. Setting 
the cone bit means  the client is trying to determine 
if it is behind a pure cone NAT. When it sees the 
cone bit is set, the server sends the RA from a 
different  IPv4 address to the one that it received the 
packet on. If the client is indeed behind a pure cone 
NAT, the NAT passes the packet to the client. 
However, if the client is behind a restricted NAT, the 
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NAT will not pass the packet to the client because 
the source is not a previous destination. 

If the client receives the RA, it knows it is 
behind a pure cone NAT and concludes  
qualification.  The client forms a Teredo address with 
the cone bit on. 
However, if the RA is not received, it could be due 
to packet loss. So after T seconds  of waiting 
(default is 4 seconds),  the client tries again, up to 
N times total (default is 3).If the client still doesn’t 
receive the RA, it tentatively  assumes it is behind 
a restricted NAT and sends the RS with the cone 
bit unset.  Since the cone bit is off, the server 
responds from the same address as it received the 
RA from. If this attempt does not succeed  after N 
times of waiting T seconds,  the client gives up, 
assuming a server connectivity problem. 

5.5 Secure qualification 

Teredo provides an option for the 
qualification  procedure to be “secured” by adding 
authentication data (the RFC calls this 
authentication encapsulation) between  the UDP 
header  and the origin data with the encapsulated 
packet. Without this data,  the client would not 
know that the response is sent from the real server 
(versus having received a randomly sent RA). The 
authentication data takes the format shown in 
Figure 7. 

 
Here, the client identifier and authentication 

value are optional and have their specific length 
indicated  in one-octet  fields. The nonce value is 
always present and always 8 octets  in length; it is a 
random number chosen by the client and repeated 
by the server in the response. 
This simple measure establishes (with high 
probability) 
 that if there is an attacker, it is at least on-path  
between  the client and the server. Figure 8 shows 
the layout of the authentication data in this simple 
case. 

 

 
 Figure 7. The general  format of the authentication data. In secure 

qualification, this data is positioned after the UDP header. 

 

 
Figure 8. Authentication data at it simplest, when there  is no client  

identifier or authentication value. 

The authentication value (if present) is a 
keyed cryptographic hash of most of this header, 
the origin header, and the IPv6 packet. By 
default,  the hash is based  on HMAC and SHA1. 
This measure provides stronger  protection against  
tampering and can help ensure  that the server is 
the one intended. The RFC is not specific on the 
value of the client identifier, but it can relate to 
the authentication value. The confirmation byte is 
non-0 if the client should obtain a new key. 

5.6 Bubble packets and creating a NAT hole 

Teredo makes use of what the Teredo RFC 
refers to as bubble packets.  These are simple 
IPv6 packets  with no IP payload; that is, the IP 
payload length is 0, and the Next Header field 
has the value 59 (No Next Header). 
These packets  manipulate a NAT into allowing the 
real traffic. A typical use is when a relay needs to 
send a packet to a Teredo client, but the client is 
behind a restricted NAT (as evidenced by the cone 
bit being unset), and the relay is not a previous 
(recent) peer with that client. This circumstance 
prevents direct communication, so the following 
bubble-to-open procedure (see Figure 9) takes 
place: 

1.   The relay sends an encapsulated bubble 
packet to the Teredo client’s server with the 
IPv6 destination set to the Teredo peer. The 
server address is extracted from the client’s 
Teredo address. 

2.   The server passes the bubble along to the 
Teredo client, adding origin data (the IPv4 
address and port of the relay). 

3.   The NAT receives the packet and passes it on 
to the client. The NAT allows this because the 
client and server communicate on a regular 
basis. 

4.   Upon receipt of the bubble, the client sends 
an encapsulated bubble to the address and 
port in the origin data (the relay). 

5.   The encapsulated bubble is received by the 
NAT and forwarded  to the relay. The NAT 
now sees the relay as a recent peer and 
allows incoming packets  from it. 

 
Figure  9. The bubble-to-open procedure  opens  a restricted NAT’s 

port to a relay. To do this, the relay asks the server to ask the client  to 
send it a bubble packet 

Thus, Teredo provides an on-demand 
service that allows packets  from arbitrary  
Internet  hosts to be passed to the client. For a 
Teredo client’s service port, the service makes a 
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restricted NAT resemble  a pure cone NAT. This 
concept is explored further  in “Teredo 
implications  on ability to reach a host through a 
NAT” section. 

In any case, the RFC requires  rate limiting of the 
bubbles  sent to a specific peer, to protect  against 
flooding. A bubble SHOULD NOT be sent if one 
was sent in the last 2 seconds  or if four were 
sent in the past 5 minutes  without receiving any 
direct responses. 

5.7 Teredo bubble packets format 

A Teredo bubble packet is typically sent to create or 
maintain a NAT mapping and consists of an IPv6 
header with no IPv6 payload. Figure 10 shows the 
Teredo bubble packet[1]. 

 

Figure 10 . Teredo bubble packet 

In the IPv6 header, the Next Header field is set to 59, 
indicating that there is no payload present. 

6. ROUTING LOOP ATTACKS 

We now present the new class of attacks 
while exemplifying it with five routing loop 
attacks[14]. Attacks in this class take advantage of 
inconsistencies between a tunnel’s overlay IPv6 
routing state and the native IPv6 routing state. More 
specifically, they exploit the fact that each end point 
in an automatic tunnel is ignorant of the other nodes 
that are currently participating in the tunnel. The 
attacker exploits this by crafting a packet which is 
routed over a tunnel to a node that is not participating 
in that tunnel. This node forwards the packet out of 
the tunnel to a native IPv6 network. In that network, 
the packet is routed back to the ingress point that 
forwards it back into the tunnel. Consequently, the 
packet will loop in and out of the tunnel. We shall 
refer to the nodes that forward the packet in and out of 
the tunnel as the victims of the attack. A loop 
terminates only when the Hop Limit [15] field in the 
IPv6 header of the packet is zeroed out. The 
maximum value that can be assigned to this field is 
255. Note that when the packet is tunneled over IPv4 
routers, the Hop Limit does not decrease. Every attack 
packet will traverse each hop along the loop 255/N 
times, where N is the number of IPv6 routers on the 
loop. As a result, the loops can be used as traffic 
amplification tools with a ratio of 255/N. The number 
of IPv6 routers on the loop is determined by the type 
of attack and by the positions of the two victims. The 
closer the two victims are, the larger 

the amplification ratio will be. In particular, we note 
that all attacks are initiated with a packet having a 
spoofed source address. As such they might be foiled 
by proper egress filtering measures deployed close to 
the attacker’s location. 

6.1 Attack #1: 6to4 Relay to ISATAP Router 

The two victims of this attack are a 6to4 
relay and an ISATAP router. Let IPISATAP and 
IP6to4 denote the IPv4 address of the ISATAP router 
and the 6to4 relay, respectively. Let PrfISATAP 
denote the IPv6 64- bit prefix of the ISATAP tunnel. 
The attack is depicted 
in Figure 1(a). It is initiated by sending an IPv6 
packet (packet 0 in Fig. 11(a)) to a 6to4 destination 
address with an embedded router address of 
IPISATAP , i.e., the destination address begins with 
2002:IPISATAP ::/48. The source address of the 
packet is an ISATAP address with PrfISATAP as the 
prefix and IP6to4 as the embedded IPv4 address. As 
the destination address is 6to4, the packet will be 
routed over the IPv6 network to the closest 6to4 relay. 
The relay receives the packet through its IPv6 
interface and processes it as a normal IPv6 packet that 
needs to be delivered to the appropriate 6to4 site. 
Hence, the packet is forwarded over the relay’s IPv4 
interface with an IPv4 header having a destination 
address derived from the IPv6 destination, i.e., 
IPISATAP . The source address is the address of the 
6to4 relay, IP6to4. The packet (packet 1 in Fig. 11(a)) 
is routed over the IPv4 network to the ISATAP router. 
The router receives the packet on its IPv4 interface. It 
processes the packet as a regular IPv4 packet that 
originates from one of the end points of the ISATAP 
tunnel. Since the IPv4 source address corresponds to 
the IPv6 source address, the packet will be 
decapsulated. Since the packet’s IPv6 destination is 
outside the ISATAP tunnel, the packet will be 
forwarded onto the native IPv6 interface. The 
forwarded packet (packet 2 in Fig. 11(a)) is identical 
to the original attack packet. Hence, it will be routed 
back to the closest 6to4 relay, in which the loop will 
start again. The loop will stop once the packet 
traverses 255 hops on the native IPv6 network. Note 
that only the part of the loop between the ISATAP 
router and the 6to4 relay traverses an IPv6 network. 
The opposite direction goes over a 6to4 tunnel over an 
IPv4 network in which the Hop Limit does not 
decrease.  

6.2 Attack #2: ISATAP Router to 6to4 Relay 

The two victims in this attack are again a 
6to4 relay and an ISATAP router, but here they have 
swapped roles. This time the ISATATP router accepts 
the attack packet and forwards it on its ISATAP 
tunnel to the 6to4 relay, which decapsulates it and 
forwards it back to the ISATAP router on the IPv6 
network. Let IPISATAP , IP6to4 and PrfISATAP be 
the same as above. The attack is depicted 
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in Figure 11(b). This attack is initiated by sending an 
IPv6 packet (packet 0 in Fig. 11(b)) with a destination 
ISATAP address having PrfISATAP as the prefix and 
IP6to4 as the embedded IPv4 address. The source 
address of the packet is a 6to4 address with a router 
having the IPISATAP address , i.e., the destination 
address begins with 2002:IPISATAP ::/48. The packet 
will be routed over the IPv6 network to the ISATAP 
router. The router receives the packet through its IPv6 
interface and processes it as a normal IPv6 packet that 
needs to be delivered to the appropriate end point in 
the ISATAP tunnel. Hence, the packet is forwarded 
over the router’s IPv4 interface with an IPv4 
encapsulation having a destination address derived 
from the IPv6 destination , i.e., IP6to4. The source 
address is the address of the ISATAP router, 
IPISATAP . The packet (packet 1 in Fig. 11(b)) is 
routed over the IPv4 network to the 6to4 relay. The 
relay receives the packet on its IPv4 interface. It 
processes the packet as a normal IPv4 packet that 
originates from one of the end points of the 6to4 
tunnel. Since the IPv4 source address corresponds to 
the IPv6 source address, the packet will be admitted 
and decapsulated. Since the packet’s IPv6 destination 
is outside the 6to4 tunnel, the packet will be 
forwarded out on the native IPv6 interface. The 
forwarded packet (packet 2 in Fig. 11(b)) is identical 
to the original attack packet. Hence, it will be routed 
back to the ISATAP  router, in which the loop will 
start again.  

6.3. Attack #3: ISATAP Router to ISATAP Router 

The two victims in this attack are two 
ISATAP routers – router A and router B – having 
addresses IPa and IPb, respectively. Let PrfA and 
PrfB be the prefixes of the ISATAP tunnels of router 
A and router B, respectively. Note that the two routers 
do not participate in the same ISATAP tunnel. 
However, they may reside at the same or different 
sites. The attack is depicted in Figure 1(c). It is 
initiated by sending an IPv6 packet (packet 0 in Fig. 
11(c)) with a destination ISATAP address having 
PrfA as the prefix and IPb as the embedded IPv4 
address. The source address of the packet is an 
ISATAP address having PrfB as the prefix and IPa as 
the embedded IPv4 address. The packet will be routed 
over the IPv6 network to router A.  The router 
receives the packet through its IPv6 interface and 
processes it as a normal IPv6 packet that needs to be 
delivered to the appropriate end point of its ISATAP 
tunnel. The fact that the source address is also an 
ISATAP address does not matter here; the important 
thing is that the packet originated outside of the tunnel 
A. Hence, the packet is forwarded over the router’s 
IPv4 interface with an IPv4 encapsulation having a 
destination address 
derived from the IPv6 destination , i.e., IPb. The 
source address is the address of the router A, IPa. The 
packet (marked with 1 in Fig. 11(c)) is routed over the 

IPv4 network to router B. The router receives the 
packet on its IPv4 interface. It processes the packet as 
a regular IPv4 packet that originates from one of the 
end points of its tunnel. Since the IPv4 source address 
corresponds to the 
IPv6 source address, the packet will be decapsulated. 
The packet’s IPv6 destination is outside of router B’s 
tunnel; hence the packet is forwarded out onto the 
IPv6 interface. The forwarded packet (packet 2 in Fig. 
11(c)) is identical to the original attack packet. Hence, 
it will be routed back to router A, in which the loop 
will start again.  

6.4 Attack #4: Teredo Client to NAT 

This attack exploits a Teredo tunnel. The two 
victims are a forwarding node that employs Teredo 
for its own IPv6 connectivity and its closest NAT. 
Such a forwarding node may be a router, a firewall, a 
Mobile IP home agent etc. We assume that the NAT 
is of type cone and it supports hair-pin routing with 
source address translation. These two assumptions are 
based on two requirements,REQ-8 and REQ-9, 
included in a Best Current Practice published by the 
IETF [16]. The attack is depicted in Figure 11(d). It is 
initiated by sending an IPv6 packet over the Teredo 
tunnel (packet 0 in Fig. 11(d)). The packet’s 
destination IPv4 address and UDP port are the same 
as the source IPv4 address and UDP port. They are 
equal to the external IPv4 address and UDP port of 
the client. The IPv6 destination and source addresses 
are Teredo addresses, denoted by IPdTeredo and 
IPsTeredo,respectively, where the fields <obfuscated 
external port>and <obfuscated external IP> in both 
addresses are identical and equal to the 1’s 
complement of the Teredoclient’s external port and 
address, respectively. Consequently, IPd Teredo and 
IPs Teredo are not equal to the client’s Teredo 
address. Having a state associated with the client  
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Figure 11 . Illustrations of the various routing loop 
attacks 

following the initial qualification procedure 
and being of type cone, the NAT will not filter the 
attack packet and will pass it tothe internal network 
while translating the destination IPv4 address and 
UDP port to the internal address and port of the client 
(packet 1 in Fig. 11(d)). The packet reaches the client 
over its IPv4 interface. The IPv4 source address and 
port of the packet correspond to the IPv6 source 
Teredo address; hence the client will admit the packet 
and remove the IPv4 and UDP headers. Since IPd 
Teredo is not the address of the client and the client is 
in forwarding mode, the client forwards the packet 
back to the network through its Teredo interface 
(packet 2 in Fig. 11(d)). The packet is encapsulated 
again with IPv4 and UDP headers, while the 
destination address and port are derived from 
IPdTeredo.Namely, they are equal to the client’s 
external address and port. The source address and port 
are the client’s internal address and port. 

Since the NAT is assumed to support hair-
pin routing, when the packet reaches the NAT it 

willbe routed back to the internal network. The 
destination address and port will be translated to the 
client’s internal address and port. Since the NAT 
supports source address translation, the source address 
and port will be translated to the client’s external 
address and port. The resulting packet is identical to 
the previous packet (packet 1 in Fig. 11(d)). Hence, it 
will be routed back to the client, in which the loop 
will start again. In this attack the Hop Limit field will 
decrease only when the packet traverses the Teredo 
client. Only then is the packet handled by an IPv6 
stack. In all the other hops on the loop, including the 
NAT, only IPv4 processing takes place. 
Applicability – We note that in some network cases 
proper ingress filtering measures at the site, such as 
reverse   path forwarding [17], may prevent the initial 
attack packet from entering the site.  

6.5 Attack #5: Teredo Server 

This attack differs from the attacks above. 
First, it engages with only one victim, a Teredo 
server. Second, the loop is not formed by forwarding 
the same IPv6 packet over and over, but by creating a 
new packet over and over again. Hence, the lifetime 
of the loop is infinite and not limited by the Hop 
Limit field. These two differences make this attack 
the most violent of all the attacks described in this 
paper. Executing the attack on a victim will result in 
an immediate exhaustion of the victim’s CPU 
resources and will bring it to a crawl.The attack loop 
is formed by tricking a Teredo server to produce a 
bubble destined to itself upon receipt of another 
bubble. The attack is depicted in Figure 11(e). It is 
initiated by sending a bubble over the Teredo tunnel 
to the server (packet 0 in Fig. 11(e)). The bubble’s 
destination IPv4 address and port are identical to its 
source IPv4 address and port. They are equal to the 
IPv4 address of the server and 3544, respectively. The 
IPv6 destination and source addresses are two distinct 
Teredo addresses, in both of which the fields 
<obfuscated external port> and <obfuscated external 
IP> are identical and equal to the 1’s complement of 
the server’s IP and port (3544). The server receives 
and processes the packet as a normal Teredo bubble. 
In particular, it verifies that the source IPv4 address 
and port correspond to the source IPv6 Teredo 
address. The server then creates a new bubble (packet 
1 in Fig. 11(e)) destined to the IPv4 address and port 
as derived from the IPv6 destination address. The 
Teredo specification does not define a check to 
preventthis (see section 5.3.1. in [18]). Hence, the 
bubble will be destined to the server’s IPv4 address 
and to port 3544. Since the new bubble is identical to 
the previous one, the loop starts again indefinitely.  

Applicability – The initial attack packet has identical 
IPv4 source and destination addresses. Some 
operating systems, e.g. Linux, will automatically drop 
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such packets upon arrival. Hence, a Teredo server 
deployed on such OSes is not vulnerable.  

7. MITIGATION MEASURES 

Some simple security measures could be 
opted  to mitigate the attacks. These measures are to 
be applied at the potential victims. Common to all the 
attacks is that the  victims admit and forward a packet 
which is eventually routed back to them. The 
proposed security measures are aimed at recognizing 
such packets and discarding them. Before a node 
forwards a packet, it must check its destination 
address to verify that there is no chance the packet 
will eventually loop back to it. To this end a node 
must be aware of any automatic tunneling mechanism 
– even those it does not employ – that might be used 
to loop the packet back to it as demonstrated in the 
previous section. In particular, the following 
conditions must hold before forwarding a packet: 1) If 
the destination address is an ISTATAP address, its 
last four octets must not be equal to an IPv4 address 
of one of the node’s interfaces. 2) If the destination 
address is a 6to4 address, its 3-6 octets must not be 
equal to an IPv4 address of one of the node’s 
interfaces. 3) If the destination address is a Teredo 
address, the field <obfuscated external IP> must not 
be equal to the 1’s complement of an IPv4 address of 
one of 

the node’s interfaces or to an IPv4 address which is 
mapped to that node by a NAT2. All these checks 
should be applied in every IPv6 node that might 
forward packets and is participating in at least one of 
these tunnels. For example, an ISTATP router that 
does not participate in a 6to4 or Teredo tunnel must 
still exercise all three checks. This implies that for any 
new automatic tunneling mechanisms that will be 
designed in the future, a corresponding security check 
should be added. 

8. CONCLUSIONS 

In this paper, some of the significant security 
implications of the protocol are highlighted; that is, 
ways in which Teredo positively or negatively 
impacts the IPv4 and IPv6 portions of the Internet. 
Teredo provides a way for dual-stack nodes that do 
not have direct IPv6 connectivity (due to being 
located behind an IPv4 NAT) to communicate with 
remote IPv6 nodes. This approach promotes the 
earlier use of IPv6 for the large number of hosts 
“stuck” behind NATs. Servers see a client’s intended 
IPv6 peers, so one should use only trusted servers; 
this is a concern mainly if the server setting is secretly 
switched to a malicious server  
 

In this paper we present a novel class of 
routing loop attacks that exploit the design of IPv6 
automatic tunnels. Five attacks of this class which 

abuse ISATAP, 6to4, and Teredo are exhibited. The 
attacks exploit the inconsistencies between a tunnel’s 
overlay IPv6 routing state and the native IPv6 routing 
state. Consequently, a carefully constructed packet 
will loop. In the first four attacks the loop is bounded 
by the Hop Limit field in the IPv6 header. However, 
the last attack is infinite since it causes a Teredo 
server to produce a new bubble packet on every loop.  

The proposed mitigation measures for such 
attacks are relatively simple however they require 
knowledge of other tunneling mechanisms that may 
not be employed by the defending node.  
. 
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