
International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

28

Protocol Transitioning through Tunneling- Worth or
Risk

Ms.Khushboo.S.Sathawane1, Prof.Sangram S.Dandge2,

M.E.(II Year)- Department of Computer Science and Engg. P.R.M.I.T.R, Badnera-Amravati1,

Assistant Professor- Department of Computer Science and Engg. P.R.M.I.T.R, Badnera-Amravati 2
Email: Khushboo.sathawane@gmail.com1 , sangramdandge@gmail.com2

Abstract- The future network layer protocol for the Internet is IPv6 . Since it is not compatible with its
predecessor, some interoperability mechanisms were designed. An important category of these mechanisms is
automatic tunnels, which enable IPv6 communication over an IPv4 network without prior configuration. This
category includes ISATAP, 6to4 and Teredo.

Teredo is a service that enables hosts located behind one or more IPv4 NATs to obtain IPv6
connectivity by tunneling packets over IPv4 UDP. In this paper,we explain how IPv6 candidates located behind
NATs can enlist the help of “Teredo servers” and “Teredo relays” to learn their “global addresses” and to obtain
connectivity, and how clients, servers and relays can be organized in Teredo networks.This paper studies the
security implications of Teredo. However, by tunneling IPv6 traffic over IPv4 UDP through the NAT and
directly to the end node, Teredo raises some security concerns. Primary concerns include bypassing
security controls, reducing defense in depth, and allowing unsolicited traffic. We present a novel class of
attacks that exploit vulnerabilities in these tunnels. These attacks take advantage of inconsistencies between a
tunnel’s overlay IPv6 routing state and the native IPv6 routing state. One of the presented attacks can DoS a
Teredo server using a single packet. The exploited vulnerabilities are embedded in the design of the tunnels;
hence any implementation of these tunnels may be vulnerable. In this paper we are Investigating whether this
protocol transitioning mechanism is a worth or a risk.

Index Terms- IPV6 ;Teredo; Tunneling;, NAT;

1. INTRODUCTION

IPv6 is the next version of the Internet
Protocol, and many hosts and networks are being
upgraded to support this version and take advantage
of its features. A part of the Internet that is
expected to lag behind in IPv6 availability are the
IPv4 Network Address Translation (NAT) devices
used in many household and organizational
networks. They are only infrequently updated or
replaced, especially on small networks such as
those found in residences. Since the complete
migration of the Internet to IPv6 is expected to take
several years, if not decades, interoperability
mechanisms that will enable the co-existence of IPv4
and IPv6 are required. One such mechanism is
tunneling.[20] Tunnels enable two IPv6 nodes to
communicate over an IPv4-only network.

In general, tunnels operate as follows. Each
tunnel has at least two end points. Each end point
must be able to process both IPv4 and IPv6 packets
and must possess an IPv4 address. To deliver an IPv6
packet over the tunnel, the ingress end point
encapsulates the packet with an IPv4 header1. The
source IPv4 address is that of the ingress end point
and the destination IPv4 address is that of the
intended egress end point. Consequently, each tunnel
end point must have a routing table that associates
each IPv6 destination address with an appropriate

next-hop IPv4 address. The packet is then handled by
the IPv4-only network as a normal IPv4 packet. When
it reaches the egress end point, it strips the IPv4
header and continues to process the original IPv6
packet. The detailed operation of tunnels can be found
in [2]. 1The Protocol field in the IPv4 header has the
decimal value of 41,indicating that IPv6 header
follows. A tunnel in which the end points’ routing
tables need to be explicitly configured is called a
configured tunnel. Tunnels of this type do not scale
well, since every end point must be reconfigured as
peers join or leave the tunnel.
 To alleviate this problem, another type of
tunnels was introduced – automatic tunnels. In
automatic tunnels the egress entity’s IPv4 address is
computationally derived from the destination IPv6
address. This feature eliminates the need to keep an
explicit routing table at the tunnel’s end points.

The paper considers the three most prominent
automatic tunnels to date: ISATAP [3], 6to4 [4], and
Teredo [5]. However, transition mechanisms that
tunnel IPv6 directly over IPv4, such as the Intra-
Site Automatic Tunnel Addressing Protocol
(ISATAP) and 6to4, do not typically work through
NATs.

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

29

2. PRELIMINARIES

2.1 What’s New in IPV6
The IPv6 protocol brings a variety of new

mechanisms to improve Internet reliability [7]. These
include the following:

• Significantly large address space
• Simplified network management using stateless

auto-configuration of nodes
• Routing efficiency due to use of fixed-length

headers
• Reduction in network processor overhead due to

reduced fragmentation
• Improved security (IPsec is built-in)
• Well-defined flow labels for Quality of Service
• End-to-end address transparency

2.2 NAT: Network Address Translation

Basic Network Address Translation (Basic
NAT) is a method by which IP addresses are mapped
from one group to another, transparent to end users.
Network Address Port Translation, or NAPT, is a
method by which many network addresses and their
TCP/UDP ports are translated into a single network
address and its TCP/UDP ports. Together, these two
operations, referred to as traditional NAT[8], provide
a mechanism to connect a realm with private
addresses to an external realm with globally unique
registered addresses. The need for IP Address
translation arises when a network’s internal IP
addresses cannot be used outside the network either
for privacy reasons or because they are invalid for use
outside the network. Network topology outside a local
domain can change in many ways. Customers may
change providers, company backbones may be
reorganized, or providers may merge or split.
Whenever external topology changes with time,
address assignment for nodes within the local domain
must also change to reflect the external changes.
Changes of this type can be hidden from users within
the domain by centralizing changes to a single address
translation router. Basic Address Translation allows
hosts in a private network to transparently access the
external network and enable access to selected local
hosts from the outside. It is mandatory that all
requests and responses pertaining to a session be
routed via the same NAT router. One way to ascertain
this would be to have NAT based on a border router
that is unique to a stub domain, where all IP packets
either originated from the domain or are destined for
the domain. There are other ways to ensure this with
multiple NAT devices.The NAT solution has the
disadvantage of taking away the endto-end
significance of an IP address, and making up for this
with an increased state in the network. As a result,
with a NAT device enroute, end-to-end IP network
level security assured by IPSec cannot be assumed to
apply to end hosts. The advantage of this approach,
however, is that it can be installed without changes to

hosts or routers. Protocol Structure NAT is a
procedure, not a structured protocol.

2.3. Tunneling Mechanism

To minimize any dependencies during the
transition, all the routers in the path between two IPv6
nodes do not need to support IPv6. This mechanism is
called tunneling. Basically, IPv6 packets are placed
inside IPv4 packets, which are routed through the
IPv4 routers. The following figure illustrates the
tunneling mechanism through routers (R) using
IPv4[8].Different uses of tunneling in the transition
are:

� Configured tunnels between two routers (as
in the figure 1.)

� Automatic tunnels that terminate at the dual
hosts

A configured tunnel is currently used in the Internet
for other purposes, for example, the MBONE (the
IPv4 multicast backbone). Operationally, it consists of
configuring two routers to have a virtual point-to-
point link between them over the IPv4 network. This
kind of tunnel is likely to be used on some parts of the
Internet for the foreseeable future.

Figure 1 Tunneling Mechanism

3. RELATED WORKS
In this section we give a brief overview of the three
automatic tunnels considered in this paper: ISATAP,
6to4, and Teredo. These tunnels are complementary,
rather than alternative, as they are designed for
different network scenarios.

3.1 ISATAP

ISATAP – Intra-Site Automatic Tunneling
Protocol [3] – is primarily designed to transport IPv6
packets between nodes in an IPv4 enterprise network.
One of those nodes is a router which also has a native
IPv6 interface. The router forwards IPv6 packets into
or out of the tunnel. A node that belongs to an
ISATAP tunnel has to know the IPv4 address of the
router. If the IPv4 interface of a node has the address
IP4, the corresponding ISATAP interface is assigned
a 64-bit ID having one of the following two formats:
0200:5EFE:IP4 or 0000:5EFE:IP4. The first one is
used if IP4 is non-private and the second one
otherwise. Using this interface ID, a link-local address

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

30

is constructed. The node probes the ISATAP router
using the Neighbor Discovery Protocol [10], in order
to discover the global prefix of the tunnel and to
construct a global IPv6 address. For each ISATAP
interface on a node a set of locators is configured. To
send an IPv6 packet destined outside of the tunnel, the
packet has to be encapsulated with an IPv4 header
whose destination address is the router of the tunnel.
If the packet is destined inside the tunnel, the IPv4
destination will be the 32 rightmost bits of the IPv6
destination address. In both cases the IPv4 source
address is the IPv4 address of the encapsulator. At the
egress end point the node first determines whether the
packet matches a locator of the ISATAP interface. If
there is a match, it verifies that one of the following
two conditions holds: 1) the source IPv6 address
corresponds to the source IPv4 address; 2) the source
IPv4 address is the IPv4 address of the ISATAP
router in the tunnel. The first condition holds when
the packet’s source is part of the same ISATAP
tunnel. The second one holds if the packet originates
from outside of the tunnel.

3.2 6to4

The 6to4 mechanism [4] is designed to
transport IPv6 packets between IPv6 clouds or sites
connected by the IPv4 Internet. It is assumed that each
IPv6 site has an edge router with an IPv4 interface on
the Internet side. The IPv4 address of that interface
determines the IPv6 prefix of the entire site. If this
address is IP4, the 6to4 prefix of the site is
2002:IP4/48. An edge router forwards IPv6 packets
into and out of the 6to4 tunnel on behalf of the nodes
in its site. An edge router that wishes to forward an
IPv6 packet on the 6to4 tunnel to another site will
encapsulate the packet with an IPv4 header having a
destination address derived from the IPv6 destination
address. The source address will be the IPv4 address
of the ingress edge router. Before decapsulating the
IPv4 header, the egress edge router verifies that if the
source address is a 6to4 address, it corresponds to the
IPv4 source address.

If the destination of the IPv6 packet is not a
6to4 address (does not have a 2002::/16 prefix) but a
native IPv6 address, the edge router encapsulates and
forwards the packet to a special router called a 6to4
relay.

3.3 Teredo

The ISATAP and 6to4 tunnels encapsulate
IPv6 packets with an IPv4 header. However, since
most NATs cannot handle IP-in-IP packets, these
mechanisms cannot work in the presence of a NAT.
Hence a third mechanism was designed – Teredo [5].
Teredo enables nodes located behind one or more
IPv4 NATs to obtain IPv6 connectivity by tunneling
packets over UDP. A Teredo node performs a
qualification procedure by interacting with an entity
called a Teredo server located outside the NATs.

Using this procedure, the node determines its external
IPv4 address and UDP port assigned to it by the
NATs.

4. THE TEREDO

Microsoft is making a strong push for IPv6, and
in response has developed a transition mechanism to
address this issue. Fortunately, the mechanism was
routed through IETF channels, and the IETF has
published RFC 4380 as a standards-track individual
submission. Originally the protocol was called
Shipworm (after a species of mollusk that digs
holes in ship hulls, analogous to what the protocol
does with NAT devices). But the protocol has been
renamed Teredo, after a common genera of
shipworms (perhaps to avoid any negative
connotation).

Teredo is already in use on the Internet. It is
available in Windows Vista and Longhorn, where
it is enabled by default. Teredo is also available in
Windows XP SP2 and Windows 2003 SP1,
although disabled by default. At least one third-
party implementation of Teredo is available for
UNIX and Mac® OS X.
 For an IPv6-capable node behind an IPv4
NAT, the barrier to sending and receiving packets
from IPv peers is that at least a portion of the
network between the IPv6-capable node and the
peer does not support IPv6. This includes at least
the NAT. To resolve the problem, Teredo
establishes an open-ended tunnel from the client,
through the NAT, to a dual-stacked node on the
Internet. IPv6 packets are tunneled through a single
User Datagram Protocol (UDP) port on the NAT.

 The use of Teredo has important security
implications, and these implications are discussed
in this paper. Little published research exists on this
topic, other than the “Security Considerations”
section of the Teredo RFC itself. John Spence of
Command Information includes a brief mention of
Teredo in the “IPv6 Security and Security
Update,”[3] and suggests disabling it since it
“defeats IPv4 NAT.”

4.1.Teredo Tunnels

In the Teredo case the tunneling is UDP, so
all IPv6 Teredo packets are composed of an IPv4
packet header and a UDP transport header, followed
by the IPv6 packet as the UDP payload[12]. Teredo
uses a combination of ICMPv6 [13] message
exchanges to set up a connection and tunneled packets
encapsulated using an outer IPv4 header and a UDP
header, and it contains the IPv6 packet as a UDP
payload.

The exact nature of the packet exchange in setting up
a Teredo connection depends on the nature of the

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

31

NAT device that sits in front of the Teredo client.
Figure 2 shows an example packet exchange that
Teredo uses when the client is behind a Restricted
NAT.

Figure 2: Teredo Tunneling

5. WORKING OF TEREDO

Teredo works by tunneling IPv6 over an IPv4 UDP
port for at least the portion of the network that is
Pv4 only. Teredo has a high degree of automatic
tunnel setup.

5.1 Teredo components

The Teredo framework consists of three basic
components: clients, relays, and servers. Teredo
clients are nodes seeking to use Teredo to reach a
peer on the IPv6 Internet. For example, a node may
need to reach an IPv6-only server. Clients are dual-
stack (IPv4 and IPv6) nodes that are “trapped”
behind one or more IPv4 NATs. Teredo clients
always send and receive Teredo IPv6 traffic
tunneled in UDP over IPv4 (see Figure 3).
In this paper, ports refer specifically to IPv4 UDP

ports unless otherwise noted.
Teredo relays serve as routers to bridge the IPv4

and IPv6 Internets for Teredo nodes. IPv6 native
packets are encapsulated for transmission over the
IPv4 Internet (including the client); when packets
are received from the IPv4 Internet, they are
decapsulated into native IPv6 packets for the IPv6
Internet.

 Teredo servers help clients set up tunnels
to IPv6 nodes, determining their Teredo address and
whether their NAT is compatible with Teredo. Like

relays, Teredo servers sit on both the IPv4 and IPv6
Internets, but do not serve as a general relay. Teredo
servers pass along packets to and from the client,
but only messages that pertain to the functioning of
the Teredo protocol; they do not pass along data
packets.

The Teredo servers are generally statically
configured on the client. For example, Windows
nodes by default use “teredo.ipv6.microsoft.com” as
their

Figure 3. Teredo encapsulates IPv6 packets in UDP over IPv4

when packets are routed as IPv4.

 server; this currently resolves to four servers (or at
least four IPv4 addresses) that Microsoft maintains.

The standard port on which the Teredo servers listen
is UDP port 3544. Both clients and relays can use
any UDP port for their Teredo service, so their UDP
service port could be ephemeral. Because the client
is behind an IPv4 NAT, the external port number of
its Teredo service is, in general, not the same as the
local port that is listened on. However, the Teredo
protocol tries to keep that external port number
stable since it is the port to which the relays need to
connect. Servers are specifically designed to be
stateless, so a large number of clients can be
accommodated.

5..2. Teredo setup

Before packets can be sent to and from
remote IPv6 nodes, some tunnel setup
communication occurs. The phases are as follows:
1. The client completes a qualification procedure

(see “Qualification procedure” section) to
establish aTeredo address.

2. The client determines which relay to use (see
“Packet relaying and peer setup for non-
Teredo peers” section) for a given IPv6 peer
node. This phase may involve a procedure to
set up the NAT for traffic from the relay
(“Bubble packets and creating a NAT hole”

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

32

section).
3. .A packet is sent via a relay The first phase

needs to be conducted only once (for each
time Teredo is activated on the client). The
next two phases are completed for each peer
that was not recently used. After that setup,
it is just a matter of sending the packet via the
relay. The relaying and per-peer setup take a
special form when the remote peer is also a
Teredo IPv6 address (“Packet relaying and
peer setup for Teredo peers” section). A
special provision (outside the scope of this
p ap e r) allows IPv6 nodes behind the same
NAT to find each other by using an optional
local client discovery procedure

Figure 4. A Teredo microcosm, including key Teredo components,

native IPv6 nodes, and IPv4 NATs. The cloud represents the
Internet, where the yellow areas are IPv4 only, the dark gray
area is IPv6 only, and the mixed gray area supports both. The

interior of the cloud represents Internet routers and
infrastructure.

5.3 Teredo addresses

Teredo clients (and only Teredo clients) receive a
specially formatted IPv6 address called a Teredo
address. Addresses contain enough information
for a relay to reach a client (see Figure 5).

Figure 5. The format of a Teredo address. Like all IPv6 addresses,

it is 128 bits (16 octets) long.

The prefix is standard for Teredo addresses;
2001:0000::/32 was recently assigned. You might
see other prefixes, such as 3ffe:831f::/32, used in
Teredo components that predate the current
assignment.The second 32 bits of the address
correspond to the IPv4 address of the client’s
Teredo server. This part of the address tells remote
nodes which server is assisting the client with
communication setup.The bottom 48 bits
correspond to the client’s external address and
Teredo service port. This part of the address

indicates to relays where to send packets destined
directly for the client. To protect these two fields
from any NAT translation, all of the bits in these
fields are reversed. The flags field is 16 bits, but
only 1 bit is assigned by the RFC. The top bit is the
“cone bit.” If set, the cone bit indicates that the
node is behind a pure cone NAT; if unset, it
indicates the node is behind a restricted NAT. The
rest of the bits in the field should be set to 0.

5.4 Origin data

When a Teredo server sends an IPv6 packet to
one of its clients on behalf of an IPv4 host, it adds
additional data between the UDP encapsulation and
the IPv6 packet. This is the origin data (see Figure
6) and reflects the IPv4 address and port number
that it acts on behalf of. (The RFC calls this origin
encapsulation.)

As in Teredo addresses, the port number and
address have all their bits reversed. The client
concludes that extra data is present, as the first
nibble after the UDP header is 0 instead of 6
(the version number from the IPv6 header).

The qualification procedure determines if a
client can use the Teredo service and
establishes the Teredo address. For example, a
client cannot use the Teredo service if it is
behind a symmetric NAT.

Figure 6. The format of the origin data, which is located below

the encapsulated IPv6 packet. Qualification procedure

A portion of the Neighbor Discovery Protocol
(NDP, RFC 2461) is used, with the Teredo server
acting as the router.

During qualification, the client sends Router
Solicitations (RSs); the server then sends back
Router Advertisements (RAs) plus an origin data
block (see “Origin data” section) in response. Both
the RA and RS messages are encapsulated ICMPv6
packets. Since the RA is sent in response to an RS
from the client’s Teredo service port, the origin data
reveals to the client its external Teredo address and
port number. That data becomes part of the client’s
Teredo address.

Qualification begins with the client sending
an RS to the server with the cone bit set. Setting
the cone bit means the client is trying to determine
if it is behind a pure cone NAT. When it sees the
cone bit is set, the server sends the RA from a
different IPv4 address to the one that it received the
packet on. If the client is indeed behind a pure cone
NAT, the NAT passes the packet to the client.
However, if the client is behind a restricted NAT, the

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

33

NAT will not pass the packet to the client because
the source is not a previous destination.

If the client receives the RA, it knows it is
behind a pure cone NAT and concludes
qualification. The client forms a Teredo address with
the cone bit on.
However, if the RA is not received, it could be due
to packet loss. So after T seconds of waiting
(default is 4 seconds), the client tries again, up to
N times total (default is 3).If the client still doesn’t
receive the RA, it tentatively assumes it is behind
a restricted NAT and sends the RS with the cone
bit unset. Since the cone bit is off, the server
responds from the same address as it received the
RA from. If this attempt does not succeed after N
times of waiting T seconds, the client gives up,
assuming a server connectivity problem.

5.5 Secure qualification

Teredo provides an option for the
qualification procedure to be “secured” by adding
authentication data (the RFC calls this
authentication encapsulation) between the UDP
header and the origin data with the encapsulated
packet. Without this data, the client would not
know that the response is sent from the real server
(versus having received a randomly sent RA). The
authentication data takes the format shown in
Figure 7.

Here, the client identifier and authentication

value are optional and have their specific length
indicated in one-octet fields. The nonce value is
always present and always 8 octets in length; it is a
random number chosen by the client and repeated
by the server in the response.
This simple measure establishes (with high
probability)
 that if there is an attacker, it is at least on-path
between the client and the server. Figure 8 shows
the layout of the authentication data in this simple
case.

 Figure 7. The general format of the authentication data. In secure

qualification, this data is positioned after the UDP header.

Figure 8. Authentication data at it simplest, when there is no client

identifier or authentication value.

The authentication value (if present) is a
keyed cryptographic hash of most of this header,
the origin header, and the IPv6 packet. By
default, the hash is based on HMAC and SHA1.
This measure provides stronger protection against
tampering and can help ensure that the server is
the one intended. The RFC is not specific on the
value of the client identifier, but it can relate to
the authentication value. The confirmation byte is
non-0 if the client should obtain a new key.

5.6 Bubble packets and creating a NAT hole

Teredo makes use of what the Teredo RFC
refers to as bubble packets. These are simple
IPv6 packets with no IP payload; that is, the IP
payload length is 0, and the Next Header field
has the value 59 (No Next Header).
These packets manipulate a NAT into allowing the
real traffic. A typical use is when a relay needs to
send a packet to a Teredo client, but the client is
behind a restricted NAT (as evidenced by the cone
bit being unset), and the relay is not a previous
(recent) peer with that client. This circumstance
prevents direct communication, so the following
bubble-to-open procedure (see Figure 9) takes
place:

1. The relay sends an encapsulated bubble
packet to the Teredo client’s server with the
IPv6 destination set to the Teredo peer. The
server address is extracted from the client’s
Teredo address.

2. The server passes the bubble along to the
Teredo client, adding origin data (the IPv4
address and port of the relay).

3. The NAT receives the packet and passes it on
to the client. The NAT allows this because the
client and server communicate on a regular
basis.

4. Upon receipt of the bubble, the client sends
an encapsulated bubble to the address and
port in the origin data (the relay).

5. The encapsulated bubble is received by the
NAT and forwarded to the relay. The NAT
now sees the relay as a recent peer and
allows incoming packets from it.

Figure 9. The bubble-to-open procedure opens a restricted NAT’s

port to a relay. To do this, the relay asks the server to ask the client to
send it a bubble packet

Thus, Teredo provides an on-demand
service that allows packets from arbitrary
Internet hosts to be passed to the client. For a
Teredo client’s service port, the service makes a

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

34

restricted NAT resemble a pure cone NAT. This
concept is explored further in “Teredo
implications on ability to reach a host through a
NAT” section.

In any case, the RFC requires rate limiting of the
bubbles sent to a specific peer, to protect against
flooding. A bubble SHOULD NOT be sent if one
was sent in the last 2 seconds or if four were
sent in the past 5 minutes without receiving any
direct responses.

5.7 Teredo bubble packets format

A Teredo bubble packet is typically sent to create or
maintain a NAT mapping and consists of an IPv6
header with no IPv6 payload. Figure 10 shows the
Teredo bubble packet[1].

Figure 10 . Teredo bubble packet

In the IPv6 header, the Next Header field is set to 59,
indicating that there is no payload present.

6. ROUTING LOOP ATTACKS

We now present the new class of attacks
while exemplifying it with five routing loop
attacks[14]. Attacks in this class take advantage of
inconsistencies between a tunnel’s overlay IPv6
routing state and the native IPv6 routing state. More
specifically, they exploit the fact that each end point
in an automatic tunnel is ignorant of the other nodes
that are currently participating in the tunnel. The
attacker exploits this by crafting a packet which is
routed over a tunnel to a node that is not participating
in that tunnel. This node forwards the packet out of
the tunnel to a native IPv6 network. In that network,
the packet is routed back to the ingress point that
forwards it back into the tunnel. Consequently, the
packet will loop in and out of the tunnel. We shall
refer to the nodes that forward the packet in and out of
the tunnel as the victims of the attack. A loop
terminates only when the Hop Limit [15] field in the
IPv6 header of the packet is zeroed out. The
maximum value that can be assigned to this field is
255. Note that when the packet is tunneled over IPv4
routers, the Hop Limit does not decrease. Every attack
packet will traverse each hop along the loop 255/N
times, where N is the number of IPv6 routers on the
loop. As a result, the loops can be used as traffic
amplification tools with a ratio of 255/N. The number
of IPv6 routers on the loop is determined by the type
of attack and by the positions of the two victims. The
closer the two victims are, the larger

the amplification ratio will be. In particular, we note
that all attacks are initiated with a packet having a
spoofed source address. As such they might be foiled
by proper egress filtering measures deployed close to
the attacker’s location.

6.1 Attack #1: 6to4 Relay to ISATAP Router

The two victims of this attack are a 6to4
relay and an ISATAP router. Let IPISATAP and
IP6to4 denote the IPv4 address of the ISATAP router
and the 6to4 relay, respectively. Let PrfISATAP
denote the IPv6 64- bit prefix of the ISATAP tunnel.
The attack is depicted
in Figure 1(a). It is initiated by sending an IPv6
packet (packet 0 in Fig. 11(a)) to a 6to4 destination
address with an embedded router address of
IPISATAP , i.e., the destination address begins with
2002:IPISATAP ::/48. The source address of the
packet is an ISATAP address with PrfISATAP as the
prefix and IP6to4 as the embedded IPv4 address. As
the destination address is 6to4, the packet will be
routed over the IPv6 network to the closest 6to4 relay.
The relay receives the packet through its IPv6
interface and processes it as a normal IPv6 packet that
needs to be delivered to the appropriate 6to4 site.
Hence, the packet is forwarded over the relay’s IPv4
interface with an IPv4 header having a destination
address derived from the IPv6 destination, i.e.,
IPISATAP . The source address is the address of the
6to4 relay, IP6to4. The packet (packet 1 in Fig. 11(a))
is routed over the IPv4 network to the ISATAP router.
The router receives the packet on its IPv4 interface. It
processes the packet as a regular IPv4 packet that
originates from one of the end points of the ISATAP
tunnel. Since the IPv4 source address corresponds to
the IPv6 source address, the packet will be
decapsulated. Since the packet’s IPv6 destination is
outside the ISATAP tunnel, the packet will be
forwarded onto the native IPv6 interface. The
forwarded packet (packet 2 in Fig. 11(a)) is identical
to the original attack packet. Hence, it will be routed
back to the closest 6to4 relay, in which the loop will
start again. The loop will stop once the packet
traverses 255 hops on the native IPv6 network. Note
that only the part of the loop between the ISATAP
router and the 6to4 relay traverses an IPv6 network.
The opposite direction goes over a 6to4 tunnel over an
IPv4 network in which the Hop Limit does not
decrease.

6.2 Attack #2: ISATAP Router to 6to4 Relay

The two victims in this attack are again a
6to4 relay and an ISATAP router, but here they have
swapped roles. This time the ISATATP router accepts
the attack packet and forwards it on its ISATAP
tunnel to the 6to4 relay, which decapsulates it and
forwards it back to the ISATAP router on the IPv6
network. Let IPISATAP , IP6to4 and PrfISATAP be
the same as above. The attack is depicted

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

35

in Figure 11(b). This attack is initiated by sending an
IPv6 packet (packet 0 in Fig. 11(b)) with a destination
ISATAP address having PrfISATAP as the prefix and
IP6to4 as the embedded IPv4 address. The source
address of the packet is a 6to4 address with a router
having the IPISATAP address , i.e., the destination
address begins with 2002:IPISATAP ::/48. The packet
will be routed over the IPv6 network to the ISATAP
router. The router receives the packet through its IPv6
interface and processes it as a normal IPv6 packet that
needs to be delivered to the appropriate end point in
the ISATAP tunnel. Hence, the packet is forwarded
over the router’s IPv4 interface with an IPv4
encapsulation having a destination address derived
from the IPv6 destination , i.e., IP6to4. The source
address is the address of the ISATAP router,
IPISATAP . The packet (packet 1 in Fig. 11(b)) is
routed over the IPv4 network to the 6to4 relay. The
relay receives the packet on its IPv4 interface. It
processes the packet as a normal IPv4 packet that
originates from one of the end points of the 6to4
tunnel. Since the IPv4 source address corresponds to
the IPv6 source address, the packet will be admitted
and decapsulated. Since the packet’s IPv6 destination
is outside the 6to4 tunnel, the packet will be
forwarded out on the native IPv6 interface. The
forwarded packet (packet 2 in Fig. 11(b)) is identical
to the original attack packet. Hence, it will be routed
back to the ISATAP router, in which the loop will
start again.

6.3. Attack #3: ISATAP Router to ISATAP Router

The two victims in this attack are two
ISATAP routers – router A and router B – having
addresses IPa and IPb, respectively. Let PrfA and
PrfB be the prefixes of the ISATAP tunnels of router
A and router B, respectively. Note that the two routers
do not participate in the same ISATAP tunnel.
However, they may reside at the same or different
sites. The attack is depicted in Figure 1(c). It is
initiated by sending an IPv6 packet (packet 0 in Fig.
11(c)) with a destination ISATAP address having
PrfA as the prefix and IPb as the embedded IPv4
address. The source address of the packet is an
ISATAP address having PrfB as the prefix and IPa as
the embedded IPv4 address. The packet will be routed
over the IPv6 network to router A. The router
receives the packet through its IPv6 interface and
processes it as a normal IPv6 packet that needs to be
delivered to the appropriate end point of its ISATAP
tunnel. The fact that the source address is also an
ISATAP address does not matter here; the important
thing is that the packet originated outside of the tunnel
A. Hence, the packet is forwarded over the router’s
IPv4 interface with an IPv4 encapsulation having a
destination address
derived from the IPv6 destination , i.e., IPb. The
source address is the address of the router A, IPa. The
packet (marked with 1 in Fig. 11(c)) is routed over the

IPv4 network to router B. The router receives the
packet on its IPv4 interface. It processes the packet as
a regular IPv4 packet that originates from one of the
end points of its tunnel. Since the IPv4 source address
corresponds to the
IPv6 source address, the packet will be decapsulated.
The packet’s IPv6 destination is outside of router B’s
tunnel; hence the packet is forwarded out onto the
IPv6 interface. The forwarded packet (packet 2 in Fig.
11(c)) is identical to the original attack packet. Hence,
it will be routed back to router A, in which the loop
will start again.

6.4 Attack #4: Teredo Client to NAT

This attack exploits a Teredo tunnel. The two
victims are a forwarding node that employs Teredo
for its own IPv6 connectivity and its closest NAT.
Such a forwarding node may be a router, a firewall, a
Mobile IP home agent etc. We assume that the NAT
is of type cone and it supports hair-pin routing with
source address translation. These two assumptions are
based on two requirements,REQ-8 and REQ-9,
included in a Best Current Practice published by the
IETF [16]. The attack is depicted in Figure 11(d). It is
initiated by sending an IPv6 packet over the Teredo
tunnel (packet 0 in Fig. 11(d)). The packet’s
destination IPv4 address and UDP port are the same
as the source IPv4 address and UDP port. They are
equal to the external IPv4 address and UDP port of
the client. The IPv6 destination and source addresses
are Teredo addresses, denoted by IPdTeredo and
IPsTeredo,respectively, where the fields <obfuscated
external port>and <obfuscated external IP> in both
addresses are identical and equal to the 1’s
complement of the Teredoclient’s external port and
address, respectively. Consequently, IPd Teredo and
IPs Teredo are not equal to the client’s Teredo
address. Having a state associated with the client

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

36

Figure 11 . Illustrations of the various routing loop
attacks

following the initial qualification procedure
and being of type cone, the NAT will not filter the
attack packet and will pass it tothe internal network
while translating the destination IPv4 address and
UDP port to the internal address and port of the client
(packet 1 in Fig. 11(d)). The packet reaches the client
over its IPv4 interface. The IPv4 source address and
port of the packet correspond to the IPv6 source
Teredo address; hence the client will admit the packet
and remove the IPv4 and UDP headers. Since IPd
Teredo is not the address of the client and the client is
in forwarding mode, the client forwards the packet
back to the network through its Teredo interface
(packet 2 in Fig. 11(d)). The packet is encapsulated
again with IPv4 and UDP headers, while the
destination address and port are derived from
IPdTeredo.Namely, they are equal to the client’s
external address and port. The source address and port
are the client’s internal address and port.

Since the NAT is assumed to support hair-
pin routing, when the packet reaches the NAT it

willbe routed back to the internal network. The
destination address and port will be translated to the
client’s internal address and port. Since the NAT
supports source address translation, the source address
and port will be translated to the client’s external
address and port. The resulting packet is identical to
the previous packet (packet 1 in Fig. 11(d)). Hence, it
will be routed back to the client, in which the loop
will start again. In this attack the Hop Limit field will
decrease only when the packet traverses the Teredo
client. Only then is the packet handled by an IPv6
stack. In all the other hops on the loop, including the
NAT, only IPv4 processing takes place.
Applicability – We note that in some network cases
proper ingress filtering measures at the site, such as
reverse path forwarding [17], may prevent the initial
attack packet from entering the site.

6.5 Attack #5: Teredo Server

This attack differs from the attacks above.
First, it engages with only one victim, a Teredo
server. Second, the loop is not formed by forwarding
the same IPv6 packet over and over, but by creating a
new packet over and over again. Hence, the lifetime
of the loop is infinite and not limited by the Hop
Limit field. These two differences make this attack
the most violent of all the attacks described in this
paper. Executing the attack on a victim will result in
an immediate exhaustion of the victim’s CPU
resources and will bring it to a crawl.The attack loop
is formed by tricking a Teredo server to produce a
bubble destined to itself upon receipt of another
bubble. The attack is depicted in Figure 11(e). It is
initiated by sending a bubble over the Teredo tunnel
to the server (packet 0 in Fig. 11(e)). The bubble’s
destination IPv4 address and port are identical to its
source IPv4 address and port. They are equal to the
IPv4 address of the server and 3544, respectively. The
IPv6 destination and source addresses are two distinct
Teredo addresses, in both of which the fields
<obfuscated external port> and <obfuscated external
IP> are identical and equal to the 1’s complement of
the server’s IP and port (3544). The server receives
and processes the packet as a normal Teredo bubble.
In particular, it verifies that the source IPv4 address
and port correspond to the source IPv6 Teredo
address. The server then creates a new bubble (packet
1 in Fig. 11(e)) destined to the IPv4 address and port
as derived from the IPv6 destination address. The
Teredo specification does not define a check to
preventthis (see section 5.3.1. in [18]). Hence, the
bubble will be destined to the server’s IPv4 address
and to port 3544. Since the new bubble is identical to
the previous one, the loop starts again indefinitely.

Applicability – The initial attack packet has identical
IPv4 source and destination addresses. Some
operating systems, e.g. Linux, will automatically drop

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

37

such packets upon arrival. Hence, a Teredo server
deployed on such OSes is not vulnerable.

7. MITIGATION MEASURES

Some simple security measures could be
opted to mitigate the attacks. These measures are to
be applied at the potential victims. Common to all the
attacks is that the victims admit and forward a packet
which is eventually routed back to them. The
proposed security measures are aimed at recognizing
such packets and discarding them. Before a node
forwards a packet, it must check its destination
address to verify that there is no chance the packet
will eventually loop back to it. To this end a node
must be aware of any automatic tunneling mechanism
– even those it does not employ – that might be used
to loop the packet back to it as demonstrated in the
previous section. In particular, the following
conditions must hold before forwarding a packet: 1) If
the destination address is an ISTATAP address, its
last four octets must not be equal to an IPv4 address
of one of the node’s interfaces. 2) If the destination
address is a 6to4 address, its 3-6 octets must not be
equal to an IPv4 address of one of the node’s
interfaces. 3) If the destination address is a Teredo
address, the field <obfuscated external IP> must not
be equal to the 1’s complement of an IPv4 address of
one of

the node’s interfaces or to an IPv4 address which is
mapped to that node by a NAT2. All these checks
should be applied in every IPv6 node that might
forward packets and is participating in at least one of
these tunnels. For example, an ISTATP router that
does not participate in a 6to4 or Teredo tunnel must
still exercise all three checks. This implies that for any
new automatic tunneling mechanisms that will be
designed in the future, a corresponding security check
should be added.

8. CONCLUSIONS

In this paper, some of the significant security
implications of the protocol are highlighted; that is,
ways in which Teredo positively or negatively
impacts the IPv4 and IPv6 portions of the Internet.
Teredo provides a way for dual-stack nodes that do
not have direct IPv6 connectivity (due to being
located behind an IPv4 NAT) to communicate with
remote IPv6 nodes. This approach promotes the
earlier use of IPv6 for the large number of hosts
“stuck” behind NATs. Servers see a client’s intended
IPv6 peers, so one should use only trusted servers;
this is a concern mainly if the server setting is secretly
switched to a malicious server

In this paper we present a novel class of
routing loop attacks that exploit the design of IPv6
automatic tunnels. Five attacks of this class which

abuse ISATAP, 6to4, and Teredo are exhibited. The
attacks exploit the inconsistencies between a tunnel’s
overlay IPv6 routing state and the native IPv6 routing
state. Consequently, a carefully constructed packet
will loop. In the first four attacks the loop is bounded
by the Hop Limit field in the IPv6 header. However,
the last attack is infinite since it causes a Teredo
server to produce a new bubble packet on every loop.

The proposed mitigation measures for such
attacks are relatively simple however they require
knowledge of other tunneling mechanisms that may
not be employed by the defending node.
.
REFERENCES
[1] Microsoft. “Teredo Overview.” microsoft.com.

http://www.microsoft.com/technet/prodtechnol/w
inxppro/maintain/teredo.mspx

[2] Denis-Courmont, Rémi. Miredo.
http://www.simphalempin.com/dev/miredo/

[3] Spence, John. “IPv6 Security and Security
Update.” NAv6TF/ARIN XV IPv6 Conference,
April2005:http://www.nav6tf.org/documents/
arin-nav6tf
apr05/6.IPv6_Security_Update_JS.pdf

[4] Jennings, Cullen. “NAT Classification
Results using STUN.” Internet Draft draft-
jennings-midcom- stun-results-00.
February 2004:
http://www.employees.org/~fluffy/ietf/
draft-jennings-midcom-stun-results
00.html

[5] Davies, E., S. Krishnan, and P. Savola. IPv6
Transition/Co-existence Security
Considerations. Internet Draft draft-savola-
v6ops- security-overview-04.txt (work in
progress). March 2006:
http://ietfreport.isoc.org/idref/draft-ietf-v6ops-
security-overview/

[6] Symantec. Symantec Internet Security Threat
Report: Trends for January 06–June 06.
Symantec white paper, Volume X, Sept 2006:
http://www.symantec.com/specprog/threatreport
/ent-whitepaper_
symantec_internet_security_threat_report_x_
09_2006.en-us.pdf

[7] Ensuring a Smooth Transition to Internet
Protocol Version 6 (IPv6)
http://www.brocade.com/downloads/documents/
white_papers/GA-WP-1574-00.pdf

[8] Sponsor Source NAT is defined by IETF
(http://www.ietf.org) in RFC 3022.
Reference
http://www.javvin.com/protocol/rfc3022.pdf
Traditional IP Network Address Translator
(Traditional NAT)

[9] Ebook: TCP/IP Illustrated – Volume 1 by-Kevin
R.Fall & W. Richard Stevens

[10] Weaver, N. “How Many Ways to 0wn the
Internet?: Towards Viable Worm Defenses:

International Journal of Research in Advent Technology, Vol.2, No.5, May 2014
E-ISSN: 2321-9637

38

http://www.cs.berkeley.edu/~nweaver/wormdefe
nse.ppt

[11] Seely, Donn. A Tour of the Worm In Proceedings
of the 1989 Winter USENIX Technical
Conference, January 1989:
http://securitydigest.org/phage/resource/seely.pdf

[12] Shiang-Ming Huang, Quincy Wu, Yi-Bing Lin
“Tunneling IPv6 through NAT with Teredo
Mechanism” Advanced Information Networking
and Applications, 2005. AINA 2005. 19th
International Conference on (Volume:2)

[13] C. Huitema, “Teredo: Tunneling IPv6 over UDP
through NATs”, Internet draft, draft-huitema-
v6ops-teredo-02.txt (Work In Progress), March
2004.

[14] Gabi Nakibly Michael Arov “Routing Loop
Attacks using IPv6 Tunnels “-WOOT’09
Proceedings of the 3rd USENIX conference
onOffensive technologies Pages 7-7 USENIX
Association Berkeley, CA, USA ©2009

[15] T. Narten et al., “Neighbor discovery for IP
version 6 (IPv6),”IETF RFC 4861, September
2007

[16] F. Audet et al., “Network address translation
(NAT) behavioral requirements for unicast
UDP,” IETF RFC 4787 (BCP 127), January
2007.

[17] F. Baker and P. Savola, “Ingress filtering for
multihomed networks,” IETF RFC 3704,
March 2004.

[18] C. Huitema, “Teredo: Tunneling IPv6 over
UDP through network address translations
(NATs),” IETF RFC 4380, February 2006

[19] Teredo Overview- Microsoft Corporation
Published: January 2003

[20] Dr. James Hoagland –“The Teredo Protocol:
Tunneling Past Network Security and Other
Security Implications”, Principal Security
Researcher Symantec Advanced Threat
Research

